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et aAbstract

Let X be a finite collection of nonempty relations over the rela-
tion scheme R(A 1 , A2 , ..., An); then the closure of X under embedding
and direct product' (up to isomorphism) is a finitely generated Im-
plicational Dependency family (ID-family) generated by X. In this
paper, we show that the class of finitely generated ID-families is iden-
tical to the class of those ID-families which possess a finite Armstrong
relation.

1 Introduction

Data dependencies such as functional dependencies (FDs), multivalued depen-
dencies (MVDs), and join dependencies (JDs) have played an important role
in the design of databases[2][3]. In addition, they have been used as integrity
constraints in an integrity-checking mechanism(3]. The legal databases are

*This research was supported in part by U.S. Army Research Office under grant
#DAAL03-87-G-0004.
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those which obey the constraints specified by the database administrator
originally. Consequently, we are interested in studying families of instances
characterized by a given set of dependencies such as FDs, MVDs, etc.

The class of Implicational Dependencies (IDs) was defined by Fagin[2] as
the logical generalization of the previously defined class of full dependencies.
Properties of ID-families are mainly studied in [2].[4],[5],[7], in particular, it
is shown that the collection of ID-families is closed under join and projection.

In[5], it is shown that a collection of relations over scheme R(A,. A, .... A,)
axiomatizable by iDs if iud only if it contains a trivial database and it is

domain independent and closed under embedding and direct products.
In this paper, we use the above result to estab ish that the collection

of ID-families with a finite Armstrong relation and the collection of finitely
generated ID-families are identical.

Vardi[8] has established a finite set of IDs with no finite Armstrong re-
lation. This, together with the above result, implies that finitely specifiable
ID-families are not finitely generated.

2 Preliminaries

In this paper, we assume readers to be familiar with [2], and [5]. We will
follow the notation of [2]. In addition, throughout this paper we only deal
with scheme R(A 1 , A 2, ... , An).

Following Fagin[2], we define an Implicational Dependency (ID) to be a
typed sentenceoof the for-, V/ iVx 2.. Vxr(a 1 Aa 2 ... A ak --+ 3), where each a,
is an atomic formula of thl- fo, m R(y1 , Y2, ..., y,) and 3 is an atomic formula
of the form R(yI,Y 2,...,y") , .i = Y3, where Yd E {xl,X2,...,x.m}. We also
assume that k > 1 and each xi occurs in some aj. For example, the formula
VaVbVcIVc2VdVd2R(a,b, cl,dj) A R(a,b, c2, d2 ) - cI = c2) represents the
FD AB --* C for the 4-ary relation scheme R(A, B, C, D), and the formula
VaVbVb2VcVc2R(a, bl, cl) A R(a, b2, c 2) -* R(a, bi,c 2 ) represents the MVD
A --- + B for the 3-ary relation scheme R(A, B,C).

Let r and s be relations for R ( our relations are all finite relations ), then I or
ion~ ~ ~ ~ o r , obotest f'

we define the direct product of r and s, in notation r x s, to be the set of all V
tuples t = ((1 , t21), (t12, 122), ... ,(tn, t20)) such that tl " (tl I 2. 11.tn) E r rAB [
and t2 = (t 2 1 ,t 22 ,...,t 2 n) E s. For example, the direct product of the first 0.C
two relations in the following diagram is the third relation. I eat to

By__
LDsItribut 1.on/ ...

AvallabilItv Codes

Aval and/or

M% attIe~~



r

a b c
at bt a

S
A B C

a, b, cl
a 2  b2 C2

r xs

(a, a,) (b, b1 ) (c, cl)
(a, a2) (b, b2) (c, C2 )
(al, a,) (bi, b1) (cl,cl)
(a/, a2) (bl,b 2) (c,c 2 )

The direct product of r, x r2 x ... x r, is defined as usual. Also, we
define Dom(r) to be Dom,(AI) x Dom,(4 2 ) x ... x Dom,(A,), where each
Domr(A:) is the set of all the ith coordinates of r. For example, the Dom(r)
in the above diagram is:

Dom(r)
A B C
a b c
a b ci
a bi c
a bi ci
a/ b c
at b cl

a/ bt c
a/ bi ci

For the relation scheme R(A1 ,...,4,), we also assume a countably in-
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finite underlying domain for each Ai from which A, takes its values. Let
r and s be nonempty relations for R, then f = (flf2,..., f,) is called an
embedding from s to r if fi is a 1-1 function from Dom,(A,) to Domr(A,)
for each i and for any tuple (a,..., an) E Dom(s), then (a,,..., an) E s iff
(fi(ai), f 2 (a2 ),..., f,(a)) E r. In fact, embedding is a typed 1-1 homomor-
phism between two structures. In case such f exists, we say s can be embedded
into r. An embedding f is called an isomorphism if f is onto. We will use the
notation r s to show that r and s are isomorphic. A subset s of r is called
a substructure of r if Dorn(s) l r = s. It is obvious that if s is a substructurc
of r, then the identity map from Dom(s) to Dom(r) is an embedding.

Let E be a set of IDs, then SAT(E) is the set of all finite relations
satisfying E. A nonempty collection of relations F is an ID-family if there
exists a set E of IDs such that F = SAT(E). In case E is finite, we say F is
finitely specifiable ID-family.

Let E be a set of IDs, then E, a I E H a}, i.e. E, is the set of all IDs
which logically follow from E. A relation r is called an Armstrong relation if
all members of E. are true in r and all other IDs are false in r. Armstrong
relations and their applications are extensively studied in [1], [21, and [6].

For any collection K of relations, let

SK = { r r can be embedded into some member of K}
PK={ r r r x r 2 x ... x r n for r i members of K}

The next theorem gives a characterization for ID-families.

Theorem 2.1 [5]Let F be a family of relations for R, then F is an ID-family
iff..
(1) F is closed under P.
(2) F is closed under S.
(3) F contains a singleton.

We would like to mention here that Makowsky and Vardi[5] use the term
"subdatabase" instead of "substructure".
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3 Main Result

Let X = {rj, r 2 , ... ,rn} # 0 be a collection of nonempty relations for R,
then theorem 2.1 implies that SPX is an ID-family generated by X (note
that condition (3) is trivially satisfied as any tuple t in some ri will form the
substructure {t} for ri). In case X contains a single relation, we will say SPX
is singly generated.

The i.ext two lemmas imply that the collection of finitely generated ID-
families and the collection of singly generated ID-fanilies are identical.

Lemma 3.1 Let s, and s2 be substructures of r and r2 rcspectively, then
S1 x S2 is a substructure of ri x r2 .

Proof. Straightforward.

Lemma 3.2 Let X = {rl, r 2, . - rm} be a collection of nonempty relations
for R, then SPX = SP{rl x r 2 x ... x rm}.

Proof. Let t 2 , t 3, ... , t, be tuples in r 2 , r 3, . - rm respectively. By lemma
:3.1, r 1 x {t 2 } X ... x {tml is a substructure of r, x r 2 x ... x rm. Now since
r, is isomorphic to r, x {t2} x ... x {t,}, it follows that rl is a member of
SP{r, x r 2 x ... x rm. Similarly, we can show ri E SP{r, x r 2 x ... x rm}

for i = 2,3,...,m.
We now establish a sequence of results to prove our main result.

Lemma 3.3 Let {F I i E I} be a collection of ID-families, then G =n{F I
z E I} is an ID-family.

Proof. Since singleton relations satisfy all IDs, it is clear that G -# 0. To
prove the lemma, we will use theorem 2.1. Let r1 , r2 E G, then ri, r2 E F, for
each i. Therefore, r, x r2 E F, for each i. Hence, r, x r 2 E G and G is closed
under products. Similarly we can prove that G is closed under substructure.

Definition 3.1 Let X be a collection of relations over R, then the smallest
ID-family containing X is defined to be:

G(X) = n{F I X C F and F is an ID-family }

5



Lemma 3.3 together with the fact that X C SAT(O) implies that G(.V)
always exists.

Theorem 3.1 Let X = {r}, then SPX is an ID-family and r is an Arm-
strong relation.

Proof. Since SPX is closed under S and P, then by theorem 2.1, SPX =

SAT(E) for some set of IDs E. The definition of G(X), smallest ID-family
containing X, and theorem 2.1 together imply that SPX = G(X).

Let F = {7 I r = .Y and -f is an ID 1, then by definition of G(X), we have
SPX C SAT(F). Also, since every member of E is true in r, we have E C F
which implies SAT(J) C SAT(E). This shows that

G(X) = SPX = SAT(F) = SAT(E)

Now we show that r is an Armstrong relation for E. It is obvious that
any a which is the logical consequence of E is true in r. Suppose a is not the
logical consequence of E, then there exists a relation s E SAT(E) such that
a is false in s. Now, if a is true in r, then a will be a member of F. But this
is a contradiction since s E SAT(Er) = SAT(F).

Finally, we show that the collection of finitely generated ID-families is the
same as the collection of ID-families possessing a finite Armstrong relation.

Theorem 3.2 The collection of finitely generated ID-families and the col-
lection of ID-families possessing a finite Armstrong relation are identical.

Proof. By theorem 3.1 and lemma 3.2, finitely generated ID-families
possess finite Armstrong relations. On the other hand, suppose F possesses
a finite Armstrong relation r. Since SP{r} = SAT(E) is the smallest ID-
family containing r, it follows that SAT(E-) C F. Now let s E F and suppose
s is not a member of SAT(E), then there exists a a E E which is false in s.
Since r is an Armstrong relation for F, it follows that a is false in r. But this
is a contradiction as r E SAT(E). This shows that F C SAT(Ej).
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4 Final remarks

Let r = {t}, then F = SPjr} is the collection of all singletons together
with 0. F can be axiomatized by the set of all IDs. In addition, V can he
axiomatized by the following finite set of IDs:

Vxj ... Vx,Vy, ... Vy,(R(xl, x,2, ... x,) A R(yj, Y2, .. ,Y,) - X = YI)

Vx 1...VxVy...Vy,(R(xl, x2, x, ) A R(y, Y2 Y,) - x2 = Y2)

Vxi... Vx,,Vy1...Vy,,(R(x 1,x ..... x,1) A R(yl, y2, . Y,,) -- x,, = y,,)

This example motivates one to investigate the relationship between finitely
generated and finitely specifiable ID-families. Vardi[8] has constructed a fi-
nite set of IDs with no finite Armstrong relation. This together with theorem
3.2 shows that finitely specifiable ID-families are not finitely generated. We
do not know whether finitely generated ID-families are finitely specifiable.

References

[1] C. Beeri, M. Dowd, R. Fagin, and R. Statman, On the structure of
Armstrong relations for functional dependencies. J. ACM 31,1( 1984
pp. 30-46.

[2] R. Fagin, Horn clauses and database dependencies, J.ACM 29,4(Oct.
1982), pp. 952-985.

[3] M.M. Hammer and D.J. Mcleod, Semantic integrity in a relational data
base system. In Proc. of Ist [nt. Conf. on Very Large Databases (Sept.
1975), pp. 25-47.

[-1] R. Hull, Finitely specifiable implication dependency families. .1. ACM/
31,2(Apr. 1984), pp. 210-226.

[51 J. Makowsky and M. Vardi, On the expressive power of data dependen-
cies. Acta Informatica 23,3(1986), pp. 231-244.

7



[61 H. Mannila and K. Raiha. Automatic generation of test data for re-
lational queries. J. of Computer and System Scicncs :38, 2(1989), pp.
240-258.

[7] K. Taghva, Some characterizations of finitely specifiable iniplicatimial
dependency families, Information Processing Letters 23(Oct. 19 %6) pp.
153-158.

[8] M.Y. Vardi, Personal communication.

8


